Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
The Korean Journal of Physiology and Pharmacology ; : 51-57, 2015.
Article in English | WPRIM | ID: wpr-727826

ABSTRACT

The etiology of periodontal disease is multifactorial. Exogenous stimuli such as bacterial pathogens can interact with toll-like receptors to activate intracellular calcium signaling in gingival epithelium and other tissues. The triggering of calcium signaling induces the secretion of pro-inflammatory cytokines such as interleukin-8 as part of the inflammatory response; however, the exact mechanism of calcium signaling induced by bacterial toxins when gingival epithelial cells are exposed to pathogens is unclear. Here, we investigate calcium signaling induced by bacteria and expression of inflammatory cytokines in human gingival epithelial cells. We found that peptidoglycan, a constituent of gram-positive bacteria and an agonist of toll-like receptor 2, increases intracellular calcium in a concentration-dependent manner. Peptidoglycan-induced calcium signaling was abolished by treatment with blockers of phospholipase C (U73122), inositol 1,4,5-trisphosphate receptors, indicating the release of calcium from intracellular calcium stores. Peptidoglycan-mediated interleukin-8 expression was blocked by U73122 and 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid tetrakis (acetoxymethyl ester). Moreover, interleukin-8 expression was induced by thapsigargin, a selective inhibitor of the sarco/endoplasmic reticulum calcium ATPase, when thapsigargin was treated alone or co-treated with peptidoglycan. These results suggest that the gram-positive bacterial toxin peptidoglycan induces calcium signaling via the phospholipase C/inositol 1,4,5-trisphosphate pathway, and that increased interleukin-8 expression is mediated by intracellular calcium levels in human gingival epithelial cells.


Subject(s)
Humans , Bacteria , Bacterial Toxins , Calcium , Calcium Signaling , Calcium-Transporting ATPases , Cytokines , Epithelial Cells , Epithelium , Gram-Positive Bacteria , Inflammation , Inositol 1,4,5-Trisphosphate Receptors , Interleukin-8 , Peptidoglycan , Periodontal Diseases , Phospholipases , Reticulum , Thapsigargin , Toll-Like Receptor 2 , Toll-Like Receptors , Type C Phospholipases
2.
International Journal of Oral Biology ; : 11-17, 2015.
Article in Korean | WPRIM | ID: wpr-145425

ABSTRACT

The gingival epithelium of the oral cavity is constantly exposed to exogenous stimuli such as bacterial toxins, allergens, and thermal changes. These exogenous stimuli are resisted by innate host defense in gingival epithelial cells. However, it is unclear exactly how the exogenous stimuli affect detrimentally on the human gingival epithelial cells. Here, we investigated whether the allergen, such as house dust mite (HDM) extract, is linked to Ca2+ signaling and proinflammatory cytokine expression in primary cultured human gingival epithelial cells. HDM extract induced an increase in intracellular Ca2+ concentration ([Ca2+]i) in a dose-dependent manner. Extracellular Ca2+ depletion did not affected on the HDM extract-induced increase in [Ca2+]i. The HDM extract-induced increase in [Ca2+]i was abolished by the treatment with U73122 and 2-APB, which are inhibitors of phospholipase C (PLC) and inositol 1,4,5-trisphosphate (IP3) receptor. Moreover, HDM extract induced the mRNA expression of pro-inflammatory cytokine, interleukin (IL)-8. These results suggest that HDM extract triggers PLC/IP3-dependent Ca2+ signaling and IL-8 mRNA expression in primary cultured human gingival epithelial cells.


Subject(s)
Humans , Allergens , Bacterial Toxins , Epithelial Cells , Epithelium , Inositol 1,4,5-Trisphosphate , Interleukin-8 , Interleukins , Mouth , Pyroglyphidae , RNA, Messenger , Type C Phospholipases
3.
The Korean Journal of Physiology and Pharmacology ; : 31-36, 2012.
Article in English | WPRIM | ID: wpr-727561

ABSTRACT

The receptor activator of NF-kappaB ligand (RANKL) signal is an activator of tumor necrosis factor receptor-associated factor 6 (TRAF6), which leads to the activation of NF-kappaB and other signal transduction pathways essential for osteoclastogenesis, such as Ca2+ signaling. However, the intracellular levels of inositol 1,4,5-trisphosphate (IP3) and IP3-mediated cellular function of RANKL during osteoclastogenesis are not known. In the present study, we determined the levels of IP3 and evaluated IP3-mediated osteoclast differentiation and osteoclast activity by RANKL treatment of mouse leukemic macrophage cells (RAW 264.7) and mouse bone marrow-derived monocyte/macrophage precursor cells (BMMs). During osteoclastogenesis, the expression levels of Ca2+ signaling proteins such as IP3 receptors (IP3Rs), plasma membrane Ca2+ ATPase, and sarco/endoplasmic reticulum Ca2+ ATPase type2 did not change by RANKL treatment for up to 6 days in both cell types. At 24 h after RANKL treatment, a higher steady-state level of IP3 was observed in RAW264.7 cells transfected with green fluorescent protein (GFP)-tagged pleckstrin homology (PH) domains of phospholipase C (PLC) delta, a probe specifically detecting intracellular IP3 levels. In BMMs, the inhibition of PLC with U73122 [a specific inhibitor of phospholipase C (PLC)] and of IP3Rs with 2-aminoethoxydiphenyl borate (2APB; a non-specific inhibitor of IP3Rs) inhibited the generation of RANKL-induced multinucleated cells and decreased the bone-resorption rate in dentin slice, respectively. These results suggest that intracellular IP3 levels and the IP3-mediated signaling pathway play an important role in RANKL-induced osteoclastogenesis.


Subject(s)
Animals , Mice , Blood Proteins , Boron Compounds , Calcium-Transporting ATPases , Cell Membrane , Dentin , Estrenes , Inositol , Inositol 1,4,5-Trisphosphate , Inositol 1,4,5-Trisphosphate Receptors , Macrophages , NF-kappa B , Osteoclasts , Phosphoproteins , Proteins , Pyrrolidinones , Receptor Activator of Nuclear Factor-kappa B , Reticulum , Signal Transduction , Tumor Necrosis Factor-alpha , Type C Phospholipases
SELECTION OF CITATIONS
SEARCH DETAIL